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Abstract —- A new method for steady state analysis of non-
linear periodic circuits is proposed. The new method is simi-
lar to the well known technique of Harmonic Balance, but
uses wavelets as basis functions instead of Fourier series.
Because of the increased sparsity of the Jacobian matrix, the
new method scales linearly with the size of the problem and is
well snited for large scale simulations.

I. INTRODUCTION

Steady state analysis of nonlinear circuits under periodic
excitations remains one of the most computationally chal-
lenging tasks in microwave design, particularly for highly
nonlinear circuits under multitone excitations. A common
approach to numerical solution of this class of problems is
to expand the nonlinear differential circuit equation (usu-

ally in MNA form) [1], [2]:
Ci+Gx+ f(x)+u=10 1)

in a periodic basis that naturally enforces boundary condi-
tions

x(f+1) = x(8), u(t+ 1) = u() {2
This expansion results in a nonlinear algebraic equation
(X)) = (CD+ DX+ FX)+U =0 3)

where
X=Tx,x=TX,U = Tu, )
matrix D is a representation of the derivative operator in

expansion basis {{;}:

D] = (2L,¢) )

and, finally, T and T are matrices associated with the for-
ward and inverse transform arising from the chosen expan-
sion basis.

Equation (3} is usually selved for X by Newton's itera-
tions, in which case it’s Jacobian can be written as

J(X) = g% = D+G+ T[g—f]f" (6)

Traditional approach for such expansion is using Fourier
series with current state of the art features being diamond
truncation of the base frequency set and frequency mapped
Fourier transform ([1], [2]). This method is widely known
as Harmonic Balance. HB provides reasonable accuracy
and convergence, but exhibits high demands for CPU time
and memory storage for large scale simulations,

We are proposing a new method for steady state analysis

of periodic nonlinear circuits. Proposed method utilizes .

orthogonal wavelets [4] as the expansion basis and is sig-
nificantly faster than Harmonic Balance for highly nonlin-
ear, large scale and broadband circuits, while retaining it’s
accuracy and convergence properties. We also provide
analysis of computational cost of both methods and show
that with respect to the highest order of intermodulation
products to be retained, traditional approach has computa-
tional cost of O(N?) to O(N), while wavelet methods are
O(N), which gives them significant advantage in simula-
tions of multitone and highly nonlinear circuits.

II. WAVELET FORMULATION

Because of the general form matrix formulation, equa-
tions (1)-(6) still hold, with miner differences arising from
construction of the matrices in (3). Matrix D contains con-
nection coefficients (5) which define projection of the
derivative operator onto wavelet space [5]:

D =TRT )

where R is a Toeplitz matrix ([6], p.183) with clements #;
on it’s i-th diagonal:

L I

matrices T and T are associated with the forward and
inverse wavelet transform, N, is the number of time points
for analysis and @(#) is the scaling function associated
with given wavelet. Coefficients r; are in fact rational num-
bers and for each type of wavelets can be precomputed
symbolicaily ([5], [8]) and tabulated for future reference.
Because we use wavelets that have local support, these
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coeflicients are nonzero only for small values of i. Because
of that matrix R is structurally sparse. Transform matrices
T and T are block diagonal, with blocks constructed
from filter coefficients associated with the particular wave-
let and thus are also structurally sparse and bandlimited
[7]. This means that matrix D is also bandlimited and
sparse with O(N,) nonzero entries (Fig. 1). This also
means that T(df/0x)T in (6) is a sparse bandlimited
matrix with O(N,) nonzero entries (Fig. 2). Periodic
boundary conditions are enforced by using periodized
wavelets [8] which preserve sparsity of the matrices D, T
and T and that of Jacobian (6) in general.
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Fig. 1 Sparsity pattern for matrix D expanded in a basis of

perredic orthogonal local support wavelets.

III. COMPUTATIONAL COST ANALYSIS

Let us consider equation (1) in scalar form. Provided
orthogonal Fourier transform is used, matrices 7 and T in
(4) are square and dense ([1]). Jacobian (6) also becomes a
dense matrix because of the T(df/ 9x)T component. If
we denote order of expansion as N, , Jacobian is a dense

N,x N, matrix that has O(N ,2) nonzero elements.

We can generalize this to a vector case. Matrices in (3)
and (6) have N,x N, block structure with each nonzero
block corresponding to one nonzero entry in circuit equa-
tion matrices (1). Density of Jacobian (6) in this case is
dominated by dense blocks corresponding to nonlinear ele-
menis in the circuit (Fig. 3). Only the size of these blocks
changes with the order of expansion. Overall density of the
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Fig.2  Sparsity pattern for the T'(3f/3x)T component of
Jacobian expanded in a basis of periodic orthogonal local support
wavelets.
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Fig.3  Example of sparsity pattern for Jacobian resulting from
Fourier series expansion of the MNA equations. Dense blocks
account for 98.6% of nonzero elements.

. . . . 2 .
Jacobian in this case is N y; = O(K - N;}, where K is con-
stant for a given circuit and therefore

Ny, =O(N?) ©
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like in scalar case. In it’s turn, order of expansion is lin-
early proportional to the number of frequencies in trun-
cated set:

N, = 2N +]1 (10)

In general case, for multitone analysis with § tones, box
or diamond truncation and highest order of IM products
retained in analysis equal to ¥y, number of frequencies in
truncated set is proportional to the volume of S-dimen-
sional cube N fEO(N‘f{) ([13, p.245). However, for a
practically important case of intermodulation analysis with
equidistant tone frequencies (e.g. 900, 910, 920, ... MHz),
frequencies of the new IM products due to increase in Ny
often coincide with already existing in the grid, thus reduc-
ing cost to

N,z0(S Np) (11)

Combining (9), (10) and (11), we conclude that for mul-
titone Harmonic Balance computational cost in terms of
the number of nonzero elements in Jacobian is equal to at
least N, = O(Ni,) .

Similarly to HB expansion, estimations given in previ-
ous section for wavelet expansion can be generalized to
include circuit equations (1), where each nonzero element
after expansion becomes an N, x N, sparse block, each
having O(N,) nonzero entries (see Fig. 1 and Fig. 2).
Total number of nonzero entries in wavelet Jacobian
becomes

Nyz=O(N) (12)

with N, = 2N because of the sampling theorem.

With wavelets we use trivial truncation that produces an
equidistant uniform frequency grid spanning harmonics
and IM components up to required Ny. This, however, is
quite a beneficial trade-off as this scheme produces fre-
quency grid with

Ny

Ny = o( 4] (13)
Af

components, where Af is the relative density if the fire-

quency grid (e.g. for base frequencies 99 and 100 MHz

Af = 1%). Combining (12) and (13} we conclude that

computational cost of wavelet expansion is

Ny, = O(Ny) (14)

and despite the primitive truncation schemes, with increase
in Ny and § wavelet methods very quickly gain significant
advantages in computational cost (Fig. 4).
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Fig. 4. Comparison of computational complexity in terms of
the number of nonzero elements in the Jacobian.

IV. NUMERICAL RESULTS

All simulations referred in this section were performed
in Matlab 6.5.0 (R13), running on a SUN Blade-1000
workstation with 900 MHz UltraSPARC-III CPU and 3
GB of physical RAM. In both examples diamond trunca-
tion was used for Harmonic Balance and trivial truncation
for wavelet expansion. Daubechies wavelets of second
order were used for wavelet expansion in both examples.
Both methods produced essentially identical results in
terms of accuracy and convergence (not shown here due to
space constraints).

A. Cascode amplifier

In the first example a 900 MHz cascode LNA was con-
sidered. The amplifier consists of 2 BJTs with DC bias and
impedance matching networks. Total size of MNA equa-
tions for this example is 25. Two tones with frequencies of
900 and 910 MHz and equal amplitudes were used for the
input. In each case (HB and wavelets) third order in-band
intermodulation products with frequencies of 920 and 930
MHz were computed with Ny ranging from 5 to 22 (maxi-
mum value for HB given software implementation and
available memory). Number of nonzero elements in the
Jacobian was recorded and is shown in Fig, 5.

Results exhibit good correspondence with asymptotical
computational complexity estimates derived in the previ-
ous section (Fig. 4). Of particular interest is the intersec-
tion of HB and wavelet plots which occurs between Ny =9
and Ny = 10 (note the same region in Fig. 4 for Af =1%).
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Fig. 5. Number of nonzero elements in the Jacobian for cas-
code amplifier circuit.

" B. Gilbert cell mixer

The second example involves a BJT Gilbert cell mixer
circuit that consists of 9 transistors (including 3 as current
sources), DC bias and impedance matching networks. The
mixer was configured for down conversion with LO input
at 1 GHz, RF input at 900 MHz and IF output at 100 MHz.
Total size of MNA equations for this circuit is 37. In each
case conversion gain was computed as a function of RF
power while keeping LO power at +1 dBm. Simulations
were performed for Ny ranging from 3 to 22 (again, lim-
ited by memory requirements for HB simulations). For
each Ny maximum number of nonzero elements in the
Jacobian was recorded and is shown in Fig. 6.

The plot is in a good agreement with theoretical estima-
tions (Fig. 4). Fig. 6 shows that before Ny = 9 HB memory
requirements grow siightly slower than O(N H} which can
be explained by the fact that T{af/ ax)T components in
(6) do have some additional sparsity within mostly dense
blocks After Ny = 9 memory requirements grow as
O(N H) which is due to the quick saturation of the dia-
mond truncation grid with base frequencies of 900 and
1000 MHz, after which grid becomes equidistant and N ,
grows essentially as O(N ) as opposed to (11). However,
these minor variations from the trend do not affect the fact
that wavelet expansion has stable computational cost of
O(N ;) and becomes preferable at around Ny = 4 with
gain exceeding order of magnitude by the time Ny reaches
10.
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Fig. 6. Number of nonzero elements in the Jacobian for Gil-
bert cell mixer circuit.

V. CONCLUDING REMARKS

In this paper we have shown that proposed wavelet
method for steady state analysis of nonlinear periodic cir-
cuits has O(Ng) computational cost as opposed to
O(N H) for traditionai Harmonic Balance, This makes
wavelet techniques particularly attractive for simulations
of highly nonlinear, large scale and broadband circuits.
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