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Abstract -- A new method for steady state analysis of non- 
linear periodic circuits is proposed. The new method is simi- 
lar to the well known technique of Harmonic Balance, but 
uses wavelets as basis functions instead of Fourier series. 
Because of the increased spars@ of the Jacobian matrix, the 
new method scales linearly with the size of the problem and is 
well suited for large scale simulations. 

I. INTRODUCTION 

Steady state analysis of nonlinear circuits under periodic 
excitations remains one of the most computationally chal- 
lenging tasks in microwave design, particularly for highly 
nonlinear circuits under multitone excitations. A common 
approach to numerical solution of this class of problems is 
to expand the nonlinear differential circuit equation (usu- 
ally in MNA form) [l], [2]: 

Ci+Gx+f(x)+u = 0 (1) 

in a periodic basis that naturally enforces boundary condi- 
tions 

x(t+z) = x(t), u(t+T) = u(t) (2) 

This expansion results in a nonlinear algebraic equation 

Q(X) = (kl+~)X+F(X)+u = 0 (3) 

where 

X=Tx,x=?X,U=Tu, (4) 

matrix D is a representation of the derivative operator in 
expansion basis { ci} : 

LDijl = (:Ls Cj) (5) 

and, finally, T and ? are matrices associated with the for- 
ward and inverse transform arising from the chosen expan- 
sion basis. 

Equation (3) is usually solved for X by Newton’s item- 
tions, in which case it’s Jacobian can be written as 

J(X) = g = tD+&+T[g]? (6) 

Traditional approach for such expansion is using Fourier 
series with current state of the art featores being diamond 
truncation of the base frequency set and frequency mapped 
Fourier transform ([ 11, [2]). This method is widely known 
as Harmonic Balance. HB provides reasonable accuracy 
and convergence, but exhibits high demands for CPU time 
and memory storage for large scale simulations. 

We are proposing a new method for steady state analysis 
of periodic nonlinear circuits. Proposed method utilizes 
orthogonal wavelets [4] as the expansion basis and is sig- 
nificantly faster than Harmonic Balance for highly nonlin- 
ear, large scale and broadband circuits, while retaining it’s 
accuracy and convergence properties. We also provide 
analysis of computational cost of both methods and show 
that with respect to the highest order of intermodulation 
products to be retained, traditional approach has cotnputa- 
tional cost of O(@) to O(@, while wavelet methods are 
O(N), which gives them significant advantage in simula- 
tions of multitone and highly nonlinear circuits. 

II. WAVELET FORM”LATlON 

Because of the general form matrix formulation, eqoa- 
tions (l)-(6) still hold, with minor differences arising from 
constmcfion of the matrices in (3). Matrix D contains con- 
nection coefficients (5) which define projection of the 
derivative operator onto wavelet space [5]: 

D = TR? (7) 

where R is a Toeplitz matrix (161, p.183) with elements ri 
on it’s i-tb diagonal: 

matrices T and ? are associated with the forwad and 
inverse wavelet transform, NC is the number of time points 
for analysis and q(t) is the scaling fonction associated 
with given wavelet. Coefficients ri are in fact rational nom 
hers and for each type of wavelets can be precomputed 
symbolically ([S], [8]) and tabulated for future reference. 
Because we use wavelets that have local support, these 
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coefficients are nonzero only for small values of i. Because 
of that m$ix R is structurally sparse. Transform matrices 
T and T are block diagonal, with blocks constructed 
from filter coefficients associated with the particular wave- 
let and thus are also structurally sparse and bandlimited 
[7]. This means that matrix D is also bandlimited and 
sparse with O(N,) noenzero entries (Fig. 1). This also 
means that T(af/ax)T in (6) is a sparse bandlimited 
matrix with O(N,) nonzero entries (Fig. 2). Periodic 
boundary conditions are enforced by using periodized 
wavelets [8] which preserve spa&y of the matrices D, T 
and ? and that of Jacobian (6) in general. 
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Fig. 1 Spa&y pattern for matnx D expanded in a basis of 
penod~c orthogonal local support wavelets. 

III. COMPUTATIONAL COST ANALYSIS 

Let us conslder equation (1) in scalar form. Provided 
orthogonal Fourier transform is used, matrices T and ? in 
(4) are square and dense ([l]). Jacobian (6j also becomes a 
dense matrix because of the T(af /?Jx)T cOmpOnent. If 
we denote order of expansion as N, , Jacobian is a dense 
N, x N, matrix that has O(N;) nonzero elements. 
We can generalize this to a vector case. Matrices in (3) 

and (6) have N, x N, block structure with each nonzero 
block corresponding to one nonzero entry in circuit equa- 
tion matrices (1). Density of Jacobian (6) in this case is 
dominated by dense blocks corresponding to nonlinear ele- 
ments in the circuit (Fig. 3). Only the size of these blocks 
changes with the order of expansion. Overall density of the 
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Fig. 2 Sparsity pattern for the T(af /ax)? c~mpnent of 
Jacobian expanded in a basis of periodic orthogonal local support 
wavelets. 
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Fig. 3 Example of spars@ pattern for Jacobian resultmg from 
Fourier series expansion of the MNA equations. Dense blocks 
account for 98.6% of nonzero elements. 

Jacobian in this case is N, = O(K N:) , where Kis con- 
stant for a given circuit and therefore 
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like in scalar case. In it’s turn, order of expansion is lin- 
early proportional to the number of frequencies in tmn- 
cated set: 

N, = zN/+ 1 (10) 

In general case,‘for multitone analysis with Stones, box 
or diamond truncation and highest order of IM products 
retained in analysis equal to NH, number of frequencies in 
truncated set is proportional to the volume of S-dimen- 
sional cube NfzO(Ni) ([l], p.245). However, for a 
practically important case of intermodulation analysis with 
equidistant tone frequencies (e.g. 900, 910, 920, _.. MHz), 
frequencies of the new IM products due to increase in NH 
often coincide with already existing in the grid, thus reduc- 
ing cost to 

N,zO(S.N;) (11) 

Combining (9), (10) and (1 I), we conclude that for mul- 
titone Harmonic Balance computational cost in terms of 
the number of nonzero elements in Jacobian is equal to at 
least N, z 0( N;) 

Similarly to HB expansion, estimations given in previ- 
ous section for wavelet expansion can be generalized to 
include circuit equations (I), where each nonzero element 
after expansion becomes an N, x N, sparse block, each 
having O(N,) nonzero en&s (see Fig. 1 and Fig. 2). 
Total number of nonzero entries in wavelet Jacobian 
becomes 

N,vz^O(N,) (12) 

with N, = ZN, because of the sampling theorem. 
With wavelets we use hivial truncation that produces an 

equidistant uniform frequency grid spanning harmonics 
and IM components up to required NM This, however, is 
quite a beneficial trade-off as this scheme produces fre- 
quency grid with 

N, = O(3) 

components, where Ai is the relative density if the fre- 
quency grid (e.g. for base frequencies 99 and 100 MHz 
Af = 1%). Combining (12) and (13) we conclude that 
computational cost of wavelet expansion is I 

N NZ = W’,) (14) 

and despite the primitive tnmcation schemes, with increase 
in NH and S wavelet methods very quickly gain significant 
advantages in computational cost (Fig. 4). 

Fig. 4. Comparison of computational complexity in terms of 
the number of nonzero elements in the Jacobian. 

IV. NUMERICAL RESULTS 

All simulations referred in this section were performed 
in Matlab 6.50 (R13), running on a SUN Blade-1000 
workstation with 900 MHz UltmSPARC-III CPU and 5 
GB of physical RAM. In both examples diamond tmnca- 
tion was used for Harmonic Balance and trivial truncation 
for wavelet expansion. Daubechies wavelets of second 
order were used for wavelet expansion in both examples. 
Both methods produced essentially identical results in 
terms of accuracy and convergence (not shown here due to 
space constraints). 

In the tirst example a 900 MHz cascode LNA was con- 
sidered. The amplifier consists of 2 BJTs with DC bias and 
impedance matching networks. Total size of MNA equa- 
tions for this example is 25. Two tones with frequencies of 
900 and 910 MHz and equal amplitudes were used for the 
input. In each case (HB and wavelets) third order in-band 
intermodulation products with frequencies of 920 and 930 
MHz were computed with NH ranging from 5 to 22 (maxi- 
mum value for HB given software implementation and 
available memory). Number of nonzero elements in the 
Jacobian was recorded and is shown in Fig. 5. 

Results exhibit good correspondence with asymptotical 
computational complexity estimates derived in the prev- 
ous section (Fig. 4). Of particular interest is the intersec- 
tion of HB and wavelet plots which occurs between NH = 9 
and NH = 10 (note the same region in Fig. 4 for A f = 1%). 
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Fig. 5. Number of nonzero elements in the Jacobian for cas- 
code amplifier circuit. 

B. Gilbert cell mixer 

The second example involves a BJT Gilbert cell mixer 
circuit that consists of 9 transistors (including 3 as current 
sources), DC bias and impedance matching networks. The 
mixer was configured for down conversion with LO input 
at I GHz, RF input at 900 MHz and IF output at 100 MHz. 
Total size of MNA equations for this circuit is 37. In each 
case conversion gain was computed as a function of RF 
power while keeping LO power at +I dBm. Simulations 
were performed for NH ranging from 3 to 22 (again, lim 
ited by memory requirements for HB simulations). For 
each NH maximum number of nonzero elements in the 
Jacobian was recorded and is shown in Fig. 6. 

The plot is in a good agreement with theoretical estima- 
tions (Fig. 4). Fig. 6 shows that before NH= 9, HB memory 
requirements grow slightly slower than OjNH) which can 
be explained by the fact that T(af/&)T components in 
(6) do have some additional spa&y within mostly dense 
blocks. After NH = 9 memory requirements grow as 
O(Ni) which is due to the quick satoration of the dia- 
mond truncation grid with base frequencies of 900 and 
1000 MHz, after which grid becomes equidistant and Nf 
grows essentially as O(N,) as opposed to (11). However, 
these minor variations from the trend do not affect the fact 
that wavelet expansion has stable computational cost of 
O(N,) and becomes preferable at around NH = 4 with 
gain exceeding order of magnitude by the time NH reaches 
10. 

Fig. 6. Number of nonzero elements m the Jacoluan for Gil- 
bert cell mixer circuit. 

V. CONCLUDING REMARKS 

In this paper we have shown that proposed wavelet 
method for steady state analysis of nonlinear periodic cir- 
cuits has O(N,) computational cost as opposed to 
O(Ni) for traditional Harmonic Balance. This makes 
wavelet techniques particularly attractive for simulations 
of highly nonlinear, large scale and broadband circuits. 
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